Molecular QCA cells. 1. Structure and functionalization of an unsymmetrical dinuclear mixed-valence complex for surface binding.
نویسندگان
چکیده
Utilization of binary information encoded in the charge configuration of quantum-dot cells (the quantum-dot cellular automata, QCA, paradigm) requires molecule-sized dots for room temperature operation. Molecular QCA cells are mixed-valence complexes, and the evaluation and functionalization of an unsymmetrical heterobinuclear, two-dot, Fe-Ru molecular QCA cell is described. The solid state structures of trans-RuCl(dppm)(2)(C[triple bond]CFc) (1) (dppm = methylbis(diphenylphosphane), Fc = (eta(5)-C(5)H(5))Fe(eta(5)-C(5)H(4))) and mixed-valence [trans-RuCl(dppm)(2)(C[triple bond]CFc)][BF(4)] (1a) as well as XPS and spectroscopic data suggest class II behavior suitable for the intended application. Utilization of the trans-Cl position of 1 permits functionalization for surface binding. Two "tailed" complexes of 1, trans-Ru(dppm)(2)(C[triple bond]CFc)(C[triple bond]CPhOCH(3)) (2) and trans-[Ru(dppm)(2)(C[triple bond]CFc)(N[triple bond]CCH(2)CH(2)NH(2))][PF(6)] (3), have been prepared and characterized. The solid state structure of 3 and multinuclear NMR experiments define the structures. In addition, the spectroscopic properties of all complexes and their mixed-valence species are used to define the effect of the substituent "tail" on mixed-valence properties. Further, the electrochemistry of these compounds permits assessment of the extent of perturbation of the substituents on the comproportionation constants and overall electrochemical stability. The complexes possess properties necessary for candidate QCA molecules.
منابع مشابه
Molecular QCA cells. 2. Characterization of an unsymmetrical dinuclear mixed-valence complex bound to a Au surface by an organic linker.
Utilization of binary information encoded in the charge configuration of quantum-dot cells (the quantum-dot cellular automata, QCA, paradigm) requires surface-bound molecule-sized dots for room temperature operation. Molecular QCA cells are mixed-valence complexes, and the evaluation of a surface-bound unsymmetrical, heterobinuclear, two-dot, Fe-Ru molecular QCA cell is described. The tailed co...
متن کاملMolecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata.
The amine functionality of the linker on the dinuclear complex [trans-Ru(dppm)(2)(Ctbd1;CFc)(NCCH(2)CH(2)NH(2))][PF(6)] reacts with Si-Cl bonds of a chlorinated, highly B doped Si (111) surface to yield Si-N surface-complex bonds. The surface bound complex is constrained to a near vertical orientation by the chain length of the linker as confirmed by variable angle XPS. Oxidation of the dinucle...
متن کاملNovel Unsymmetrical Ru(III) and Mixed-valence Ru(III)/Ru(II) Dinuclear Compounds Related to the Antimetastatic Ru(III) Drug NAMI-A
In this paper we report the stepwise preparation and the characterization of new unsymmetrical monoanionic Ru(III) dinuclear compounds, [NH(4)][{trans-RuCl(4)(Me(2)SO-S)}(mu-L){mer-RuCl(3)(Me(2)SO-S)(Me(2)SO-O)}] (L = pyz (1), pym (2)). By a similar synthetic approach we also prepared new mixed-valence Ru(III)/Ru(II) dinuclear compounds of formula [NH(4)][{trans-RuCl(4)(Me(2)SO-S)}(mu-pyz){cis,...
متن کاملCounterion-free molecular quantum-dot cellular automata using mixed valence zwitterions – A double-dot derivative of the [closo-1-CB9H10]− cluster
Article history: Received 20 May 2013 In final form 9 July 2013 Available online 16 July 2013 Molecular quantum-dot cellular automata (QCA) paradigm is a promising approach to molecular electronics. QCA cells can be implemented using mixed-valence compounds. However, the existence of counterions can perturb the local electric field and thus is detrimental to information encoding and processing....
متن کاملTemplate Synthesis, Structural Characterization and Antibacterial Activity of an Unsymmetrical Tridentate Schiff Base Nickel(II) Complex
Nickel(II) complex of [NiL2](ClO4)2, where L is an unsymmetrical tridentate ligand of 2-(2-aminoethyl)imino-3-butanone oximehas been synthesized by a template condensation reaction. The complex was characterized on the basis of microanalytical, spectroscopic, and other physicochemical properties. X-ray diffraction study of the complex revea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inorganic chemistry
دوره 42 18 شماره
صفحات -
تاریخ انتشار 2003